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MOS Transistor Applications
(Digital Circuits)
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• Termed CMOS Logic
• Widely used in industry today (millions of transistors in many ICs using this logic
• Almost never used as discrete devices

Review from Last Time:



Bipolar Transistor

B:   Base
C:   Collector
E:   Emitter

Review from Last Time:



Bipolar Transistor
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n-type silicon

Review from Last Time:
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Bipolar and MOS Region Comparisons
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Simplifier Basic Multi-Region Model 

C B
I βI=

t

BE

V
V

ES
B e

β
AJI =

q
kTVt =

VBE=0.7V
VCE=0.2V

IC=IB=0

Forward Active

Saturation

Cutoff

VBE>0.4V

VBC<0

IC<βIB

VBE<0

VBC<0

Bipolar Transistor
Review from Last Time:



Methods of Analysis of Nonlinear Circuits
Will consider three different  analysis  requirements and techniques  for 
some particularly common classes of nonlinear circuits

1. Circuits with continuously differential devices 

Interested in obtaining transfer characteristics of these circuits or   
outputs for given input signals

2. Circuits with piecewise continuous devices 

interested in obtaining transfer characteristics of these circuits or 
outputs for a given input signals

3. Circuits with small-signal inputs that vary around some operating point  

Interested in obtaining relationship between small-signal inputs and 
the corresponding small-signal outputs.  Will assume these circuits 
operate linearly in some suitably small region around the operating 
point

Other types of nonlinearities may exist and other types of analysis may be 
required but we will not attempt to categorize these scenarios in this course



Circuits with small-signal inputs that vary 
around some operating point  

• This is one of the most useful classes of circuits that exist

• Use is driven by goal to use nonlinear devices ( at fundamental device level, 
that’s all we have that provide power gain) to perform linear signal processing 
functions

• Concept of “systems” with small-signal inputs that vary around some 
operating point throughout the electrical engineering field and in many  
other fields as well

• Although the concepts will be introduced in the context of electronic 
circuits, the principles and mathematics are generally applied



Small-signal Operation of Nonlinear Circuits

• Small-signal principles

• Example Circuit

• Small-Signal Models

• Small-Signal Analysis of Nonlinear Circuits



Small-signal Operation of Nonlinear Circuits

• Small-signal principles

• Example Circuit

• Small-Signal Models

• Small-Signal Analysis of Nonlinear Circuits



Small-Signal Principle
y
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Q-point
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Nonlinear function
y=f(x)

• units for x,y can be anything
• formulation useful in a broad range of fields !
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Small-Signal Principle
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Relationship is nearly linear in a small enough region around Q-point
Region of linearity is often quite large
Linear relationship may be different for different Q-points

y=f(x)



Small-Signal Principle
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Small-Signal Principle 
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Device Behaves Linearly in Neighborhood of Q-Point
Can be characterized in terms of a small-signal coordinate system

y=f(x)
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Small-Signal Principle 

Changing coordinate systems:

ySS=y-yQ

xSS=x-xQ
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Small-Signal Principle 
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• Linearized model for the nonlinear function y=f(x)
• Valid in the region of the Q-point
• Will show the small signal model is simply Taylor’s series expansion

at the Q-point truncated after first-order terms

Small-Signal Model:



Small-Signal Principle 
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• Mathematically, small signal model is simply Taylor’s series expansion
at the Q-point truncated after first-order terms

Small-Signal Model:
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Small-Signal Principle
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(consider a 1-port circuit element)



Small-Signal Principle
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A Small Signal  Equivalent Circuit

2-Terminal
Nonlinearl

Device
f(x)

Small-Signal Principle 
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The small-signal model of this 2-terminal electrical network is a resistor of value 1/y
One small-signal parameter characterizes this one-port but it is dependent on Q-point



Small-Signal Principle 

Goal with small signal model is to predict 
performance of circuit or device in the 
vicinity of an operating point

Operating point is often termed Q-point

Will be extended to functions of two and 
three variables



Small-signal Operation of Nonlinear Circuits

• Small-signal principles

• Example Circuit

• Small-Signal Models

• Small-Signal Analysis of Nonlinear Circuits

(the analysis will be tedious and serve as justification for introducing more 
efficient methods of analyzing nonlinear circuits)



Small signal analysis example

Assume M1 operating in saturation region

By selecting appropriate value of VSS, M1
will operate in the saturation region

VIN=VMsinωt

VM is small
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Small signal analysis example

VIN=VMsinωt

VM is small
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Small signal analysis example
VIN

t
VM

-VM

Consider three points on the input waveform

at VIN=VM ( )2
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μC WV V V -V -V R
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= −

at VIN=0 ( )2
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= −

at VIN= -VM ( )2
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Recall that is x is small ( )21+x 1+2x≅

Observe this is a linearizing approximation to the nonlinear function (1+x)2

These are highly nonlinear equations !



Small signal analysis example
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Consider three points on the input waveform

at VIN=VM ( )2
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Recall that is x is small ( )21+x 1+2x≅
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Consider the first of these 3 equations:
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2L 4L

⎡ ⎤⎡ ⎤− + ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦



Small signal analysis example
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Consider three points on the input waveform
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Consider the second  of these 3 equations:
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Small signal analysis example
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Consider three points on the input waveform
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Consider the third of these 3 equations:
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⎡ ⎤⎡ ⎤− − ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦



Small signal analysis example
Consider three points on the input waveform
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at VIN=VM

at VIN=0

at VIN= -VM

After all of this work, these 3 nonlinear equations “simplify to”



Small signal analysis example
Consider three points on the input waveform

( ) ( )2 OX SS TOX
OUT DD SS T M

μC WR V +VμC WV V V +V R V
2L 4L

⎡ ⎤⎡ ⎤− + ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
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⎡ ⎤⎡ ⎤− − ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

at VIN=VM

at VIN=0

at VIN= -VM

After all of this work, these 3 nonlinear equations “simplify to”

Note that the output deviation from the value when VIN=0 have the same 
magnitudes but opposite signs and are linearly proportional to VM

Note that the output decreases when the input increases and it increases when 
the input decreases 

It can be shown that for some convenient values of W, L, and R, the coefficient 
multiplying VM can be much larger than 1



Small signal analysis example
Consider three points on the input waveform

Note that the output deviation from the value when VIN=0 have the same 
magnitudes but opposite signs and are linearly proportional to VM

Note that the output decreases when the input increases and it increases when 
the input decreases 

It can be shown that for some convenient values of W, L, and R, the coefficient 
multiplying VM can be much larger than 1

This simple nonlinear transistor circuit has gain !

But this analysis method is TOO tedious !!!

Have the output values only for three values of the input



Small signal analysis example

Assume M1 operating in saturation region

By selecting appropriate value of VSS, M1
will operate in the saturation region

VIN=VMsinωt

VM is small ( )2
OX

D IN SS T

μC WI V -V -V
2L

=

OUT DD D
V =V -I R

( )2TSS
OX

DQ VV
2L

WC μI +=

Another way of analyzing this circuit

Define IDQ to be the drain current when VIN=0 and VOQ to be the output voltage 
when VIN=0   (will use this later)

( )2OX
OUTQ DD DQ DD SS T

μ C WV V -I R = V - V +V R
2L

=



Small signal analysis example

[ ]( ) RVVtV
2L

WμCVV TSSM
OX

DDOUT
2sin +−−= ω

Assume M1 operating in saturation region

By selecting appropriate value of VSS, M1
will operate in the saturation region

VIN=VMsinωt

VM is small ( )2
OX

D IN SS T

μC WI V -V -V
2L

=

OUT DD D
V =V -I R

( )2
OX

OUT DD IN SS T

μC WV V V -V -V R
2L

= −

Another way of analyzing this circuit



Small signal analysis example

[ ]( ) RVVtV
2L

WμCVV TSSM
OX

DDOUT
2sin +−−= ωVIN=VMsinωt

VM is small

[ ] [ ] R
VV

tV1-VV
2L

WμCVV
TSS

M
TSS

OX
DDOUT

2
2 sin

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+−=
ω

Recall that if x is small ( )21+x 1+2x≅

[ ] [ ] R
VV

t2V1-VV
2L

WμCVV
TSS

M
TSS

OX
DDOUT ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+−=
ωsin2

[ ] [ ] [ ]
2 2

OX OX M
OUT DD SS T SS T

SS T

μC W μC W 2V sin tV V V V R V V R
2L 2L V V

ω⎛ ⎞⎧ ⎫= − + + +⎨ ⎬ ⎜ ⎟+⎩ ⎭ ⎝ ⎠

[ ] [ ]2
OX OX

OUT DD SS T SS T M

μC W μC WV V V V R V V R V sin t
2L L

ω⎧ ⎫ ⎧ ⎫= − + + +⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭



Small signal analysis example

VIN=VMsinωt

[ ] [ ]2
OX OX

OUT DD SS T SS T M

μC W μC WV V V V R V V R V sin t
2L L

ω⎧ ⎫ ⎧ ⎫= − + + +⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

By selecting appropriate value of VSS, M1
will operate in the saturation region

Assume M1 operating in saturation region



Small signal analysis example

VIN=VMsinωt

[ ] [ ]2
OX OX

OUT DD SS T SS T M

μC W μC WV V V V R V V R V sin t
2L L

ω⎧ ⎫ ⎧ ⎫= − + + +⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

Quiescent Output ss Voltage Gain

[ ]OX
v SS T

μC WA V V R
L

= +

But – this expression gives little insight into how large the gain is !

Assume M1 operating in saturation region



Small signal analysis example

VIN=VMsinωt

[ ] [ ]2
OX OX

OUT DD SS T SS T M

μC W μC WV V V V R V V R V sin t
2L L

ω⎧ ⎫ ⎧ ⎫= − + + +⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

[ ]OX
v SS T

μC WA V V R
L

= +

[ ]
DQ

v

SS T

2I RA
V V

=
+

Thus,  substituting from the expression for IDQ we obtain

( )2TSS
OX

DQ VV
2L

WC μI +=But recall:

Note this is negative since VSS+VT < 0



Small signal analysis example

VIN=VMsinωt

[ ]
DQ

v

SS T

2I RA
V V

=
+

Observe the small signal voltage gain is twice the
Quiescent voltage across R divided by VSS+VT

• This analysis which required linearization of a nonlinear output voltage is quite 
tedious.

• This approach becomes unwieldy for even slightly more complicated circuits

• A much easier approach based upon the development of small signal models 
will provide the same results, provide more insight into both analysis and 
design, and result in a dramatic reduction in computational requirements 

If VSS and R are chosen properly, this inverting gain 
can be quite large!



End of Lecture 32


